Cloning and Applications

Cloning:

The term cloning describes a number of different processes that can be used to produce genetically identical copies of a biological entity. The copied material, which has the same genetic makeup as the original, is referred to as a clone. Researchers have cloned a wide range of biological materials, including genescells, tissues and even entire organisms, such as a sheep.

Natural Cloning

In nature, some plants and single-celled organisms, such as bacteria, produce genetically identical offspring through a process called asexual reproduction. In asexual reproduction, a new individual is generated from a copy of a single cell from the parent organism.

Types of Artificial Cloning
Three different types of artificial cloning: 
Gene cloning - produces copies of genes or segments of DNA. 
Reproductive cloning - produces copies of whole animals. 
Therapeutic cloning - produces embryonic stem cells for experiments aimed at creating tissues to replace injured or diseased tissues.


Gene Cloning
Researchers routinely use cloning techniques to make copies of genes that they wish to study. The procedure consists of inserting a gene from one organism, often referred to as "foreign DNA," into the genetic material of a carrier called a vector. Examples of vectors include bacteria, yeast cells, viruses or plasmids, which are small DNA circles carried by bacteria. After the gene is inserted, the vector is placed in laboratory conditions that prompt it to multiply, resulting in the gene being copied many times over.

Reproductive cloning for Animals

In reproductive cloning,
A mature somatic cell, such as a skin cell, from an animal that they wish to copy is removed. 
DNA of the donor animal's somatic cell was transferred into an egg cell or oocyte its own DNA-containing nucleus removed.
The transfer in two ways
Method 1: Remove the DNA-containing nucleus of the somatic cell with a needle and inject it into the empty egg. 
Method 2: Use an electrical current to fuse the entire somatic cell with the empty egg.
In both processes, the egg is allowed to develop into an early-stage embryo in the test-tube and then is implanted into the womb of an adult female animal.
Ultimately, the adult female gives birth to an animal that has the same genetic make up as the animal that donated the somatic cell. This young animal is referred to as a clone. Reproductive cloning may require the use of a surrogate mother to allow development of the cloned embryo, as was the case for the most famous cloned organism, Dolly - the sheep.

What animals have been cloned?

Over the last 50 years, scientists have conducted cloning experiments in a wide range of animals using a variety of techniques.
In 1979, researchers produced the first genetically identical mice by splitting mouse embryos in the test tube and then implanting the resulting embryos into the wombs of adult female mice. 
Then first genetically identical cows, sheep and chickens were produced by transferring the nucleus of a cell taken from an early embryo into an egg that had been emptied of its nucleus.
It was not until 1996, however, that researchers succeeded in cloning the first mammal from a mature (somatic) cell taken from an adult animal. After 276 attempts, Scottish researchers finally produced Dolly, the lamb from the udder cell of a 6-year-old sheep. Two years later, researchers in Japan cloned eight calves from a single cow, but only four survived.
Besides cattle and sheep, other mammals that have been cloned from somatic cells include: cat, deer, dog, horse, mule, ox, rabbit and rat. In addition, a rhesus monkey has been cloned by embryo splitting.


Do cloned animals always look identical?

No. Clones do not always look identical. Although clones share the same genetic material, the environment also plays a big role in how an organism turns out.

Potential applications of cloned animals
To make copies of animals with the potential benefits for the fields of medicine and agriculture.
Same Scottish researchers who cloned Dolly have cloned other sheep that have been genetically modified to produce milk that contains a human protein essential for blood clotting. The hope is that someday this protein can be purified from the milk and given to humans whose blood does not clot properly. 
For testing new drugs and treatment strategies. The great advantage of using cloned animals for drug testing is that they are all genetically identical, which means their responses to the drugs should be uniform rather than variable as seen in animals with different genetic make-ups.
After consulting with many independent scientists and experts in cloning, the U.S. Food and Drug Administration (FDA) decided in January 2008 that meat and milk from cloned animals, such as cattle, pigs and goats, are as safe as those from non-cloned animals. 
The FDA action means that researchers are now free to using cloning methods to make copies of animals with desirable agricultural traits, such as high milk production or lean meat. However, because cloning is still very expensive, it will likely take many years until food products from cloned animals actually appear in supermarkets.
Another application is to create clones to build populations of endangered.
Some people also have expressed interest in having their deceased pets cloned in the hope of getting a similar animal to replace the dead one. 

Potential drawbacks of cloning animals:

Very inefficient technique and most cloned animal embryos cannot develop into healthy individuals. For instance, Dolly was the only clone to be born live out of a total of 277 cloned embryos. This very low efficiency, combined with safety concerns, presents a serious obstacle to the application of reproductive cloning.
Some adverse health effects in sheep and other mammals that have been cloned. These include an increase in birth size and a variety of defects in vital organs, such as the liver, brain and heart. 
Premature aging and problems with the immune system. 
The relative age of the cloned cell's chromosomes. As cells go through their normal rounds of division, the tips of the chromosomes, called telomeres, shrink. Over time, the telomeres become so short that the cell can no longer divide and, consequently, the cell dies. This is part of the natural aging process that seems to happen in all cell types. As a consequence, clones created from a cell taken from an adult might have chromosomes that are already shorter than normal, which may condemn the clones' cells to a shorter life span. Indeed, Dolly, who was cloned from the cell of a 6-year-old sheep, had chromosomes that were shorter than those of other sheep her age. Dolly died when she was six years old, about half the average sheep's 12-year lifespan.

Therapeutic cloning:

Creating a cloned embryo for the sole purpose of producing embryonic stem cells with the same DNA as the donor cell. These stem cells can be used in experiments aimed at understanding disease and developing new treatments for disease. 

What are the potential applications of therapeutic cloning?

Researchers hope to use embryonic stem cells, which have the unique ability to generate virtually all types of cells in an organism, to grow healthy tissues in the laboratory that can be used replace injured or diseased tissues. In addition, it may be possible to learn more about the molecular causes of disease by studying embryonic stem cell lines from cloned embryos derived from the cells of animals or humans with different diseases. Finally, differentiated tissues derived from ES cells are excellent tools to test new therapeutic drugs.

What are the potential drawbacks of therapeutic cloning?

Many researchers think it is worthwhile to explore the use of embryonic stem cells as a path for treating human diseases. However, some experts are concerned about the striking similarities between stem cells and cancer cells. Both cell types have the ability to proliferate indefinitely and some studies show that after 60 cycles of cell division, stem cells can accumulate mutations that could lead to cancer. Therefore, the relationship between stem cells and cancer cells needs to be more clearly understood if stem cells are to be used to treat human disease.

What are some of the ethical issues related to cloning?

Gene cloning is a carefully regulated technique that is largely accepted today and used routinely in many labs worldwide. However, both reproductive and therapeutic cloning raise important ethical issues, especially as related to the potential use of these techniques in humans.
Reproductive cloning would present the potential of creating a human that is genetically identical to another person who has previously existed or who still exists. This may conflict with long-standing religious and societal values about human dignity, possibly infringing upon principles of individual freedom, identity and autonomy. However, some argue that reproductive cloning could help sterile couples fulfill their dream of parenthood. Others see human cloning as a way to avoid passing on a deleterious gene that runs in the family without having to undergo embryo screening or embryo selection.

Comments